Sample Slides

Ann Example

Series Results

x=0qx=11q, |q|<1.ddx(x=0qx)=x=0xqx1=x=1xqx1=1(1q)2, |q|<1.x=0Nqx=1qN+11q.n=0xnn!=1+x+x22!+x33!+=ex

Expectation

Discrete Random Variables

E[g(X)]=xSg(x)Pr(X=x)Var(X)=E[X2]E[X]2.

Continuous Random Variables

E[g(X)]=g(x)fX(x)dxVar(X)=E[X2]E[X]2.

Families of Discrete Random Variables I

Bernoulli random variables, XBern(p)

Pr(X=x)={p,x=1,1p,x=0. E[X]=pVar(X)=p(1p).

Binomial random variables, XBin(n,p)

Pr(X=x)=(nx)px(1p)nx, x=0,1,,n, E[X]=npVar(X)=np(1p).

Poisson random variables, XPo(λ), λ>0

Pr(X=x)=λxeλx!, x=0,1,2,. E[X]=λVar(X)=λ.

Families of Discrete Random Variables II

Geometric random variables, XGeom(p)

Pr(X=x)=p(1p)x1, x=1,2,. E[X]=1pVar(X)=1pp2.

Negative Binomial random variables, XNBin(r,p)

Pr(X=x)=(x1r1)pr(1p)nr, x=r,r+1,. E[X]=rpVar(X)=r(1p)p2.

Discrete Uniform random variables, XU(1,2,,n)

Pr(X=x)=1n, x=1,2,,n. E[X]=(n+1)/2Var(X)=(n21)/12.

Families of Continuous Random Variables I

Uniform random variables, XU(a,b),

fX(x)=1ba, a<x<b. E[X]=a+b2Var(X)=(ba)212.

Exponential random variables, XExp(λ),

fX(x)=λeλx, x>0, λ>0. E[X]=1λVar(X)=1λ2.

Normal random variables, XN(μ,σ2),

fX(x)=12πσ2e(xμ)22σ2, <x<, <μ<, σ>0. E[X]=μVar(X)=σ2.

Families of Continuous Random Variables II

Gamma random variables, XGa(n,λ),

fX(x)=λnΓ(n)xn1eλx,x>0, n>0, λ>0, Γ(n)=(n1)! E[X]=nλVar(X)=nλ2.

Beta random variables, XBeta(a,b),

fX(x)=1B(a,b)xa1(1x)b1=Γ(a+b)Γ(a)Γ(b)xa1(1x)b1,0<x<1, a>0, b>0. E[X]=aa+bVar(X)=ab(a+b)2(a+b+1).

Column example

Here is some text in a left hand column.
An image showing an example plot of a histogram.