
Markdown Slides Ann Example

MARKDOWN SLIDES
Ann Example

Today's Topics
Recap on last week
Control flow
Loops
Creating your own functions

Recap: Plotting
Matplotlib's plot function takes two arrays and produces a 2D plot:

import numpy as np
import matplotlib.pyplot as plt
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)
plt.plot(x, y)

Download the full source code for this plot.

file:///__w/sample_course/sample_course/build/slides/markdown_slides/files/lecture_sine1.py

Methods such as xlabel, ylabel and title can be used to make the plot
look nice:

plt.xlabel('x')
plt.ylabel('y')
plt.title('y = sin(x)')
plt.xlim(0, 2*np.pi)

Download the full source code for this plot

file:///__w/sample_course/sample_course/build/slides/markdown_slides/files/lecture_sine2.py

Control Flow
Control flow statements are used to determine if and when commands in
your code are carried out. Control flow is part of the staple diet for almost all
programming languages.

Control Flow
Control flow statements are used to determine if and when commands in
your code are carried out. Control flow is part of the staple diet for almost all
programming languages.

We're going to look at three types of construct which control the flow of a
piece of computer code:

If statements
For loops
While loops

CONTROL FLOW CONCEPTS
Let's consider these in turn conceptually, before we look at the Python
syntax.

IF STATEMENTS
An if statement is used to specify that a command(s) that is only executed if a
condition is satisfied.

Note: in case it isn't clear, these are not Python commands! This is a made-up
language called pseudocode.

If something is true
 Do something

IF STATEMENTS
An if statement is used to specify that a command(s) that is only executed if a
condition is satisfied.

Note: in case it isn't clear, these are not Python commands! This is a made-up
language called pseudocode.

If something is true
 Do something

e.g. Choosing what you do on the metro:

If it is Monday
 Listen to music

This can be extended to if...else statements:

If something is true
 Do something
else
 Do something else

This can be extended to if...else statements:

If something is true
 Do something
else
 Do something else

e.g. Choosing what you do on the metro:

If remembered to bring headphones
 Listen to music
else
 Read the newspaper

FOR LOOPS
A for loop repeats a specified command or list of commands several times in
succession

For some list of things
 Do something

FOR LOOPS
A for loop repeats a specified command or list of commands several times in
succession

For some list of things
 Do something

e.g. reading a newspaper on the metro

For each page in the Metro newspaper
 Read the page

The for loop can contain many commands. And o�en there is a counter: here
it might be our page number

For x = each page in the Metro newspaper
 Read page x
 Check location on the metro map
 Check phone for messages

WHILE LOOPS
A while loop is similar to a for loop, but in this case the loop is repeated only
whilst a condition is satisified.

While something is true
 Do something

WHILE LOOPS
A while loop is similar to a for loop, but in this case the loop is repeated only
whilst a condition is satisified.

While something is true
 Do something

E.g. reading a newspaper til you reach your destination:

While on the train
 Read a newspaper page
 Turn to the next page

Note that if you need a counter then you need to set it yourself

x = 0
While on the train
 x = x + 1
 Read page x

Similar ideas have been used in music for many centuries...

Control flow in Python
Now let's take a look at control flow in Python

IF STATEMENTS

Note that it is required to indent the contents of the if statement!

x = 2
if x > 0:
 print('it is true') # Print something if true

FOR LOOPS

for i in range(1,6):
 print(i) # useful function to display i

WHILE LOOPS

x = 0
while x < 5:
 x = x + 1
 print(x) # display x at this iteration

Applications of control flow
Loops and if statements are essential blocks of computer code and we'll
have a look at some examples of how to use them in the handout this week.

Here's an example of plotting multiple curves, adapting and example from
last week.

import numpy as np
import matplotlib.pyplot as plt

Create the x axis
x = np.linspace(0, 6, 200)

Create 3 plots in a loop
for i in range(1, 4):
 plt.plot(x, np.sin(i*x))

Add axis labels etc.

Download the full source code for this plot

file:///__w/sample_course/sample_course/build/slides/markdown_slides/files/lecture_sine3.py

Functions
So far we have made use of a variety of built-in functions. And today we
are going to see how to create our own.

Splitting up computer code by writing user-defined functions is a very
good idea, and Python has a couple of options for separating chunks of
code out into a function.

The syntax for creating a function is as follows:

. . .

Note a similar syntax and indenting as for control flow

def my_func():
 print("My function prints this")

The syntax for creating a function is as follows:

. . .

Note a similar syntax and indenting as for control flow

def my_func():
 print("My function prints this")

The function begins with the keyword def and then the function name
"my_func".

The syntax for creating a function is as follows:

. . .

Note a similar syntax and indenting as for control flow

def my_func():
 print("My function prints this")

The function begins with the keyword def and then the function name
"my_func".

Input arguments are defined inside brackets - for this function there are none

The syntax for creating a function is as follows:

. . .

Note a similar syntax and indenting as for control flow

def my_func():
 print("My function prints this")

The function begins with the keyword def and then the function name
"my_func".

Input arguments are defined inside brackets - for this function there are none

Once defined, we can use the function by running:

my_func()

Let's add an argument:

def square_a_number(x):
 return x**2

Let's add an argument:

def square_a_number(x):
 return x**2

The argument x has been added. You provide a value for it when you "call"
the function

Let's add an argument:

def square_a_number(x):
 return x**2

The argument x has been added. You provide a value for it when you "call"
the function

The return statement controls what value (or values) your function outputs

x = square_a_number(3)
print(x)

9

Handling errors
During your work in the practicals, you have probably encountered a bit of
red text and errors that occur when you run commands Python has a
problem with.

You can create your own error messages in your code too!

The raise function displays a message in red, and halts execution of the
code.

raise(Exception('This is a custom error message!'))

For example,

def do_sqrt(x):
 if x < 0:
 raise(Exception("Sorry, no imaginary numbers here!"))
 else:
 return x**0.5

For example,

def do_sqrt(x):
 if x < 0:
 raise(Exception("Sorry, no imaginary numbers here!"))
 else:
 return x**0.5

Adding help
A comment contained within three quotes """ at the start of our custom
function is used to display help. It is known as a docstring (documentation
string)

Test your help with

import numpy as np
import matplotlib.pyplot as plt
def sin_plus_cos(x):
 """ Takes in a value x and
 returns cos(x)+sin(x) """
 return np.cos(x)+np.sin(x)

help(sin_plus_cos)

Algorithmic thinking
algorithm
noun
a process or set of rules to be followed in calculations or other problem-
solving operations, especially by a computer.

Algorithmic thinking
algorithm
noun
a process or set of rules to be followed in calculations or other problem-
solving operations, especially by a computer.

The following is a worked example...

Numerical Solutions to differential equations
Differential equations play a part in almost every model of physical
processes: from the fundamental laws of physics, to population growth,
chemical reactions and economic modelling.

Numerical Solutions to differential equations
Differential equations play a part in almost every model of physical
processes: from the fundamental laws of physics, to population growth,
chemical reactions and economic modelling.

We are (or at least you will be later on) interested in solving differential
equations, for example

dy

dt
= −

y

2
, y(0) = 5

WHY PYTHON?
This problem can be solved using pen and paper, but that is not always
the case!
We can use Python as a powerful visualisation tool

EULER'S METHOD
Let's derive a method to solve this ODE on a computer, simply by applying
some problem solving...

We want to know how evolves with .

dy

dt
= −

y

2
, y(0) = 5

y t

EULER'S METHOD ALGORITHM
For first order differential equations of the form

Euler's Method approximates the solution using

dy

dt
= f(y, t).

yn = yn−1 + hf(yn−1, tn−1).

We can write our algorithm for this problem as:

as a function

and a for loop (I've chosen)

f(y) = −
y

2
, yn = yn−1 + hf(yn−1), y0 = 5

def f(y):
 return -y/2

h = 0.5

y = np.zeros(10)
y[0] = 5
for n in range(1, 10):
 y[n] = y[n-1]+0.5*f(y[n-1])
print(y)
plt.plot(y)

Lecture 3 Summary
Creating our own functions and being able to control when commands are
used using loops and if statements will bring us new powers to process data,
plot and more. In the handout we'll apply some of these ideas to some more
algorithms.

